

Stormwater - Untapping the Potential...

What Role Can Distributed Storages Play in Reducing Flood Effects?

Kristina Sestokas, Melbourne Water

Environment, Land, Water and Planning

Presentation Outline:

- Background
- Project Approach
- Results & Findings
- Using the Findings

Environment, Land, Water and Planning

Background

- Joint project DELWP & MW to build industry knowledge & support the new Flood Management Strategy – Port Phillip & Westernport:
 - How effective are storages at reducing flooding?
 - Information at macro scale to support further studies

Project Approach

• 20 case study catchments with different characteristics

Area	Flat Topography	Moderate Topography	Steep Topography
			1 Low Fl
Very Small	-	1 Mod FI	1 Mod Fl 1 High Fl
	1 Low Fl		1 Low Fl
Small	1 Mod Fl	1 Mod FI	2 Mod FI
Modium	1 High El	1 Mod El	1 Low Fl
Wearum		I MOU FI	2 Mod Fl
Large		1 Mod Fl	1 Low Fl
Large			2 Mod Fl

• 5 consultants & different models & modelling approaches:

Catchment Characteristics

Area

Area	Hectares
Very Small	<= 80
Small	<= 400
Medium	<= 700
Large	<= 1000
Extra Large	Not studied

Topography

Slope	1 in x (metres)
Steep	x <= 105
Moderate	x <= 500
Flat	x > 500

Imperviousness

Fraction	FI
Impervious	
Low	< 0.3
Moderate	<= 0.7
High	> 0.7

- 4 different AEP events: 20%, 10%, 5%, 1%
- 3 Storage options: No storage; 2,500L; & 5,000L (per 200m² roof area)
- Plus 4 different area categories and 3 slope categories!

Modelling Assumptions

- 100% of residential building roof areas directed to the storages
- All storages started empty and once full, remained full for the remainder of the event (i.e. storage volume is permanently lost from the model)
- Roof areas for "current" development were based on existing residential building footprints
- Future development impervious fractions were based on a value of 0.8 for all residential properties (based on existing residential zones)
- Roof areas for future development were set at 68% of each residential property area or the existing building footprint area percentage, whichever was larger
- Manning's `n' roughness values in the hydraulic models were not adjusted between scenarios
- Flood model outputs were filtered to create flood extents. The filtering criteria used included:
 - $V^*d \ge 0.008 \text{ m}^2/\text{s}$ and/or $d \ge 0.05 \text{m}$ for distributed inflows models; and
 - $V/*d \ge 0.008 \text{ m}^2/\text{s}$ and/or $d \ge 0.10\text{m}$ for rain on orid models

The process of getting to results

Data Outputs – Flood Extents

Current Flood Impacts:

- 2500L storages
- 5000L storages

Future Flood Impacts:

- Increased Development
- Increased Rainfall

Data Outputs – AAD

Flood extents

Findings – Moderate FI Catchments

Findings – Low FI and High FI Catchments

All topographies combined as minimal case studies in this category

Generally low effectiveness – very few roofs to capture rainwater from!

Seeing the results for some example Case Study Catchments

Small, Steep Catchment, Moderate FI, 5000L storages

Seeing the results for some example Case Study Catchments

Medium, Steep Catchment, High FI, 5000L storages

AAD drops from \$2.2M to \$1.1M

Storage Effectiveness Findings Summarised

AAD (5000L)

Slope	Area	Fraction Impervious		
		<0.3	0.3-0.7	>0.7
	Very Small	10-20%	40-50%	>60%
Steep	Small	0-10%	30-40%	50-60%
	Medium	0-10%	30-40%	50-60%
	Large	0-10%	20-30%	50-60%
Moderate	Very Small	0-10%	30-40%	40-50%
	Small	0-10%	30-40%	40-50%
	Medium	0-10%	20-30%	40-50%
	Large	0-10%	20-30%	40-50%
Flat	Very Small	0-10%	20-30%	40-50%
	Small	0-10%	20-30%	40-50%
	Medium	0-10%	20-30%	20-30%
	Large	0-10%	20-30%	20-30%

Flood Extents: 5yr and 100yr (5000L)

Slope	Area	<0.3	0.3-0.7	>0.7
	Very Small	5-10%	30-40%	50-60%
Stoop	Small	<5%	30-40%	50-60%
Steep	Medium	<5%	30-40%	50-60%
	Large	<5%	20-30%	40-50%
	Very Small	<5%	30-40%	40-50%
Madarata	Small	<5%	30-40%	40-50%
woderate	Medium	<5%	30-40%	40-50%
	Large	<5%	10-20%	20-30%
	Very Small	<5%	10-20%	20-30%
	Small	<5%	5-10%	10-20%
Fiat	Medium	<5%	<5%	10-20%
	Large	<5%	<5%	5-10%

Slope	Area	<0.3	0.3-0.7	>0.7
Steep	Very Small	<5%	20-30%	20-30%
	Small	<5%	20-30%	20-30%
	Medium	<5%	10-20%	20-30%
	Large	<5%	10-20%	20-30%
Moderate	Very Small	<5%	20-30%	20-30%
	Small	<5%	10-20%	20-30%
	Medium	<5%	10-20%	20-30%
	Large	<5%	10-20%	20-30%
Flat	Very Small	<5%	10-20%	10-20%
	Small	<5%	5-10%	10-20%
	Medium	<5%	<5%	5-10%
	Large	<5%	<5%	5-10%

Mapping the Region

Mapping the region

Next Steps

• Share findings:

- Through the regional Flood Strategy Port Phillip & Westernport
- Through the upcoming IWM forums & IWM working groups
- Directly with interested groups

Use findings:

- As inputs to the new *Prioritisation Tools* being developed through the regional Flood Strategy (with Council & agency input)

- To support initiation of more detailed flood modelling projects
- To support IWM assessments from a flooding perspective
- To create momentum to keep building our knowledge further!!

More Information & Thank – you!

Study information will soon be available on Melbourne Water's internet – search for Flood Management Strategy Port Phillip and Westernport

Thanks from...

Melbourne Water and DELWP!

For more information, please contact: Andrew Grant: <u>Andrew.Grant@melbournewater.com.au</u> Brigid Adams: <u>Brigid.Adams@delwp.vic.gov.au</u>

Environment, Land, Water and Planning

