

A Combined Water/Sewerage/Drainage Model – Why would you do that?

Whole of Water Cycle Pilot Model Project

Why combine models?

Model development

Challenges and Limitations

Future of combined models

Whole of Water Cycle Pilot Model Project - Objectives

- Investigate the capabilities of InfoWorks ICM to simulate water movement within a property
- Investigate the benefits and challenges to modelling water supply, sewerage and drainage in a single model
- Develop a pilot strategic model representing the urban water cycle

Why combine models of different systems?

- Understanding of interactions between systems
- More transparent inputs
- Better alignment of modelling assumptions
- Reduced modelling effort

Combining Hydraulic Models – where to start?

- Staged approach: 100 property model
- Overlaid all datasets stormwater, potable, sewer
- Reviewed systems to look for a simple pipe layout
- Potable system layout main driver for selection of pilot area

100 Property Hydraulic Model Set-up

Household Water Cycle Set-up

Household Water Cycle Set-up

Household Water Cycle Set-up

100 Property Model - Household Water Cycle Configuration

100 Property Model - Household demand profiles

100 Property Model Testing

 \checkmark DWF simulation confirmed all demands and outflows balance

 $\checkmark\,$ WWF simulation confirmed that runoff from roof flowed to RWT

 \checkmark Confirmed rainwater was correctly drawn from RWT for internal and external usage

 \checkmark Confirmed that the RWT overflowed into stormwater network when full

 \checkmark Confirmed that the model was suitably balances and did not generate excessive mass error

Scaling up the model to 5,000 property

- Potable water network as starting point
- Mixed land use
- No water cycle assumed for non-residential properties. The runoff from the roof has been connected directly to the stormwater network.
- Non-residential buildings assigned same demand pattern as residential buildings

5,000 Property Model - Household Water Cycle Model Configuration

- 680 ha catchment
- 1.1m mesh elements
- 23,197 nodes
- 8,160 pipes
- 35,215 weirs/orifices
- 59,838 lines of RTC code

5,000 Property Model Testing – Level in RWT

5,000 Property Model Testing – Internal House Supply from RWT

5,000 Property Model Testing – External Use Supply from RWT

5,000 Property Model Testing – Potable Demand

Scaling up the model to 27,000 property

- Model scaled up to approximately 27,000 properties
- Difficulties in setting potable water network
 boundaries
- Complications in replicating the potable water network behaviour
- External drainage catchments approximated
- Complexity in scaling up RTC rules

27,000 Property Model – Run times

All simulations run with 2s timestep on a GPU computer

Run Name	Simulation duration (hours)	Run time (hours)
Final Drainage Model 5y2h	3.5	3
Final Combined Model 5y2h	3.5	13
Final Drainage Model 100y2h	3.5	5
Final Combined Model 100y2h	3.5	16

Challenges and Limitations

- Water supply system difficult to model
- Controls becomes cumbersome > 5,000 lots
- Selection of model extent critical
- Limited stormwater system data
- Different approach to flood modelling
- Different design criteria for systems

The Future???

Changes made to software – updates to RTC loading

Recent developments in other software

MW investigating Rain-on-Mesh stormwater modelling approach

Nigel Pugh (Melbourne Water) – <u>Nigel.Pugh@melbournewater.com.au</u> (03) 9679 6656

Celine Marchenay (Water Technology) – <u>Celine.Marchenay@watertech.com.au</u> (03) 8526 0800

