

Flood purge and SWH at Lincoln Squares Project

Development of purging protocols

May 2017

Bringing engineering to life

Presentation Outline

- 1. Introduction
- 2. Project objectives
- 3. Upstream catchment
- 4. System configuration
- 5. Performance results from previous studies
- 6. Development of purging protocols

Project Objectives

- Flood Mitigation
 - Peak flow reduction for frequent events
 - Determine impact on flooding contributing to Elizabeth St for the 20 Year ARI event
- Stormwater Harvesting
 - Irrigation of Lincoln, Argyle and University Squares
 - Water balance optimisation to size storages and pumps to maintain reliability of irrigation supply

Upstream Catchment

- Area to the north ~37ha
- Includes portion of the University of Melbourne and the tram line on Swanston St
- Meets at the 750mm pipe adjacent Lincoln Square (to the west)

Project Layout

Council's irrigation demands

Period	Irrigation Area (m ²)	Irrigation Demand (Midway Efficient Use – ML pa)
Expanded Lincoln Square	12,897	6.97
Expanded University Square	13,500	7.25
Expanded Argyle Square	9,790	5.17
Pelham and Bouverie Street Trees	2,304	1.20
Total	38,491	20.6

The irrigation calibration produced a demand of 20.6 ML for a mean year, showing consistency with the data provided by Council.

Rainfall vs Yield

Main Tank Size Comparison – Optimal Operation

Main Tank Size Comparison – **Sub** Optimal Operation

Peak Flow Analysis

Storm / fl	ow type	Existing	2ML Tank	% Reduction	3ML Tank	% Reduction
5 Year, 20Min	Pipe	1.55	1.51	2.6%	1.48	4.5%
	Overland	1.83	0.362	80.2%	0.359	80.4%
	TOTAL	3.38	1.872	44.6%	1.839	45.6%
20 Year, 20Min	Pipe	1.76	1.66	5.7%	1.63	7.4%
	Overland	3.51	1.88	46.4%	1.87	46.7%
	TOTAL	5.27	3.54	32.8%	3.5	33.6%
50 Year, 20Min	Pipe	1.77	1.75	1.1%	1.72	2.8%
	Overland	4.88	3.31	32.2%	3.3	32.4%
	TOTAL	6.65	5.06	23.9%	5.02	24.5%

Marginal (to no) benefit to increasing the tank size to 3ML

Purging Analysis

Purging Assessment Outline

- 1. Scope
- 2. Philosophy and Approach
- 3. Method
- 4. Protocol Development
- 5. Graphical Outputs
- 6. Key Storms
- 7. Sensitivity Analysis
- 8. Summary

Objective is to maximise **Flood Mitigation** without significantly compromising Stormwater Harvesting yield

- ✓ Flood Mitigation
 - Reduction of Overland Flow (to Elizabeth St)
 - Reduction of bypass discharge
- ✓ Stormwater Harvesting
 - Irrigation of Lincoln, Argyle and University Squares
 - Water balance optimisation to maximize Tank Water Level after each storm

2. Philosophy and Approach

Develop Purge protocols to address:

- Before Storm
- ✓ Purge Water to make Required Pre-Rain Air Space using Predicted Rainfall
- During Storm
- \checkmark To maintain detention
- ✓ To ensure tank is close to full post rain event

Key Variables:

- Before Storm
- Pre-Rains Air space: based on Predicted rainfall
- ✓ BOM 3-hour Rainfall Predictions
- During Storm
- ✓ Pre-peak Air Space
- ✓ Post-Peak Air Space
- ✓ Rainfall threshold for valve close

Key Performance Indicators:

- Flood Mitigation Objective
- ✓ Overland Flow Reduction
- ✓ Percentage reduction in downstream overland flow
- Stormwater Harvesting Objective
- ✓ After Rain Tank Water Level
- \checkmark Tank percentage full at the end of the storm

Pre-Rain Flowchart

Selection of 50 storms

- Melbourne Regional Office Station # 086071
 - 1. 6-min Rainfall data between 1873-2010
 - 2. Maximum Daily Rainfall; 16 Storms
 - 3. Maximum Hourly Rainfall; 10 Storms
 - 4. Maximum 6-min Rainfall; 18 Storms
 - 5. Design Storms; 6 Storms
 1in 20 years: 30 min, 60 min and 90 min
 1 in 50 Years, 30 min, 60 min, 90 min

• Method

Selection of 50 storm

1in 20 Years, 30 min: 26.32 mm 1in 20 Years, 60 min: 34.42 mm 1in 20 Years, 90 min: 39.51 mm 1in 50 Years, 30 min: 32.57 mm 1in 50 Years, 60 min: 42.33 mm 1in 50 Years, 90 min: 48.47 mm

3. Method

Water Quantity Model:

- DRAINS
- ✓ ILSAX hydrologic model

Water Balance Model

- Excel Spreadsheet based calculations
- Calculation time steps:

5 min for Design Storms and 6 min for the others

- Pre Rain Air Space = Pre Rain Coefficient × Runoff Calculated based on Predicted Rainfall Depth
- Pre Peak Air Space = Pre Peak Coefficient × Rolling 30 min Runoff
- Post Peak Air Space = Post Peak Coefficient × Rolling 30 min Runoff
- Storage Volume = Initial Storage + Offtake Tank Outflow
- \blacktriangleright DS Overland Flow = US Flow Offtake Bypass

Water Balance Model

• Rolling 30min Runoff calculation

Phase 1:

Pre-Rain Coefficient: **10%,20%,...,100%** Pre-Peak Coefficient: **25%,50%,...,100%** Post- Peak Coefficient: **25%,50%,...,100%** No Rainfall Threshold for Valve Close

Phase 2:

Pre-Rain Coefficient: **30%,40%,50%** Pre-Peak Coefficient: **25%,50%,75%** Post- Peak Coefficient: **25%,50%,75%** No Rainfall Threshold for Valve Close

1.4

1.2

1

29

28.5

Storm #49

Rainfall Summary		
Total rainfall (mm)	24.44	
Duration (min)	180	
Maximum Intensity (mm/hr)	84.9	
Maximum Intensity (mm/6 min)	8.49	
Estimated recurrance interval (1 in yr)	65	

Protocols	
Pre- Rain Coefficient	50%
Pre-peak Coefficient	75%
Post-peak coefficient	25%
Rainfall threshold for valve close	
(mm/ 30 min)	10

U/S Overflow
 D/S overflow
 Water RL

ByPass Volume

------ OSD Out discharge

Phase 3:

Pre-Rain Coefficient: **50%** Pre-Peak Coefficient: **75%** Post- Peak Coefficient: **25%** Rainfall Threshold for Valve Close: **10 (mm/30min)**

✓ Demonstration "Presentation Sheet"

✓ Demonstration

6. Key Storms

7. Sensitivity Analysis

Predicted rainfall is 50% less than the Actual one. (-50% Error) Not Sensitive

7. Sensitivity Analysis

Predicted rainfall is 50% more than the Actual one. (+50% Error) Not sensitive

• Summary

- ✓ Protocols are developed for dual function of flood mitigation and stormwater harvesting.
- ✓ Pre-rain Air space is introduced based on the predicted rainfall – threshold is approximately 15mm with optimally 50% airspace coefficient.
- ✓ Pre peak airspace coefficient is optimally 75%
- ✓ Post peak airspace coefficient is optimally 25%
- ✓ Rainfall depth threshold for valve close in 30 min rolling period is 10mm.

• Summary

- ✓ The performance (final tank volume and reduction in overland flow) is more effective in storms with less than 50mm rainfall.
- ✓ Performance is not sensitive to up 50% error in rainfall prediction.
- ✓ Overland flow upstream generally occurs in events with intensity higher than 8 mm/6min (80 mm/hr).

Bringing engineering to life