

School of Ecosystem and Forest Sciences

Jasmine Thom, Chris Szota, Tim Fletcher, Vaughn Grey, Andrew Coutts, and Stephen Livesley

Quantifying the contribution of IWM to tree growth and transpiration

IWM and urban cooling

Urban cooling achieved through: Evapotranspiration and Shade

IWM can assist cooling by:

- providing water for evapotranspiration
- increasing canopy growth
- maintaining healthy canopies

Evapotranspiration reduces air temperature

Shade provision reduces radiant temperature

IWM case study 1: City of Monash

Transpiration sensor installed in study tree

Pit inlet to infiltration trench

Street view at Calembeena ave

IWM case study 1: Research approach

- Infiltration trenches installed adjacent to established trees with 1500 L storage capacity
- Monitored tree health, transpiration, and stormwater capture
 - 4 study streets
 - 2 tree functional types (deciduous, evergreen)
 - 2 soil types (sandy, clay)
 - 2 inlet types (lintel, pit)

Excavating the infiltration trench adjacent to an established tree

IWM and transpiration

- WSUD trees maintained transpiration under drier conditions
- non-WSUD trees reduced transpiration under drier conditions
- No difference in tree health between soil, tree, or inlet types.

IWM supports transpiration under challenging conditions

2014/15

Year

2015/16

IWM and the water balance*

- Runoff retention was low (~18 %) BUT highly variable (5 – 44 %)
- Blockages restricted inflow
- Alternative inlet designs could improve retention
- Trees transpired ~18 % of all rainfall inflows
- Trees transpired 1.4 x more water than exfiltrated through stormwater capture

Inlet capacity limited stormwater capture.

* For more information see my extended talk at Stormwater Victoria 2018, 7th June, 1:55 pm.

IWM Case Study 2: Moreland City Council

Soil Sampling

Downloading transpiration

IWM Case study 2: Research approach

IWM and tree growth*

- Trees in drained systems grew twice as fast as regular tree plantings or trees adjacent to stormwater systems
- Undrained trees had poor growth rates due to waterlogging*

IWM supports growth but waterlogging impedes growth

*For more information see Vaughn Grey at the 2018 Stormwater Victoria Conference 6th June 11:15 am

What have we learned?

Case study 1: Established trees

- IWM support transpiration during drier conditions
- Inlet capacity influences retention.
- Trees can transpire a large amount of inflows
- Larger systems with greater inlet efficiency

Calembeena Ave

Case study 2: Establishing trees

- IWM doubled growth of establishing trees
- Waterlogging impedes growth
- Consider underdrain or plant adjacent
- Larger systems

Barrow St

Where to from here?

- How does infiltration rate (soil type/drainage) affect tree response for different species?
- How do we design to maximise benefit for trees AND stormwater?
- How do species drought and waterlogging strategies affect performance?*
- Modelling the efficacy of tree-based systems
- Context-specific design guidelines

https://www.pagepersonnel.ch/sites/pagepersonnel.ch/files/styles/large/public/career-advice_job-interview-tips_answeringtough-interview-questions.jpg?itok=WXsdC9u-

* For more information see Chris Szota at Stormwater Victoria 2018, 7th June, 11:50 am.

References

- Thom, JK., Szota, C., Fletcher, TD., Coutts, AM., & Livesley, SJ. **2018**. *Quantifying transpiration of tree-based infiltration systems and the contribution of ET to the urban water budget*. Unpublished Manuscript
- Szota, C., Coutts, A.M., Thom, J.K., Virahsawmy, H.K., Fletcher, T.D., Livesley, S.J., **2018**. Stormwater runoff retention performance of tree-based infiltration systems. Submitted to: *Landscape and Urban Planning*
- Thom, JK., Coutts, AM., Broadbent, AM., & Tapper, NJ. **2016**. The influence of increasing tree cover on mean radiant temperature across a mixed development suburb in Adelaide, Australia. *Urban Forestry & Urban Greening*. 20, 233-242