

Strategic Investment in run off management

Using spatial decision support tools Stormwater Victoria Conference, 7 June 2018

Outline

Background and drivers

Introduction to the two tools

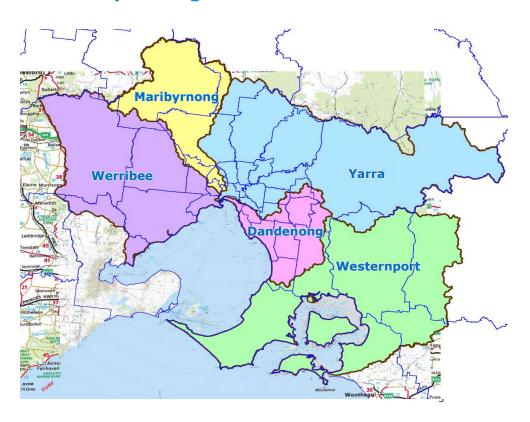
The Areas of Interest tool

The feasibility tool

Bringing the tools together

Where to from here

Stormwater Victoria Conference June 2018


2

Background and drivers

Drivers

- Designated waterway manager for large region (>12800sqkm)
- Runoff from urban, rural and public forest negatively impacts waterways
- Urbanisation brings greater challenges
- Create tools to help investment planning and drive outcomes
- Support customers that lack capability or resources

MW Operating Area

Introduction to the two stormwater tools

Areas of Interest (AOI)

WHO	Melbourne Water / Jacobs
WHAT	Decision support framework to identify and prioritise areas for investment based on stormwater and surface runoff threats
WHERE	Whole of Melbourne Water management district
WHY	Inform where we should direct investment in stormwater management e.g. through incentives such as the Living Rivers Program, and capital expenditure
RESULTS	Spatial tool displaying 'Areas of Interest' and an excel workbook that sets the framework for new questions to be asked to inform future decision making

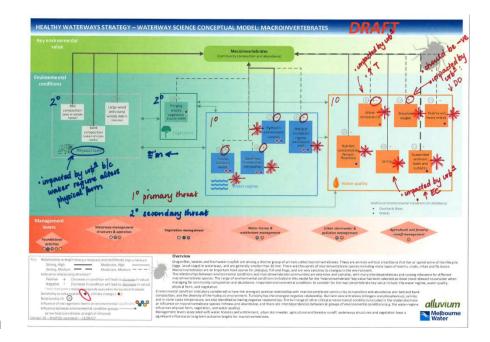
Feasibility of stormwater/runoff management actions (FOSMA)

WHO	Melbourne Water Living Rivers and Rural Land Programs / Jacobs
WHAT	Spatial urban stormwater and rural runoff management actions feasibility assessment tool for given areas of interest
WHERE	Whole of Melbourne Water management district
WHY	Identify feasible management actions for a given area of interest to inform master planning
RESULTS	Spatial tool including an Excel workbook and management actions database that identifies what management actions are suitable where within a given area of interest

Decision support framework: development process

Identify

Ways in which streams are impacted (threats)


Factors that mitigate or amplify (moderators)

Method: Review of conceptual models backed up by latest scientific studies and a series of workshops

Data collation and processing

Spatially exact

Complete coverage of MW operating area

Stormwater Victoria Conference June 2018

6

Decision support framework: input data

Primary threats

Future (2050) DCI

Intensive agriculture

Moderators

Tree canopy cover

Wetlands / water bodies

Secondary threats

Sealed roads

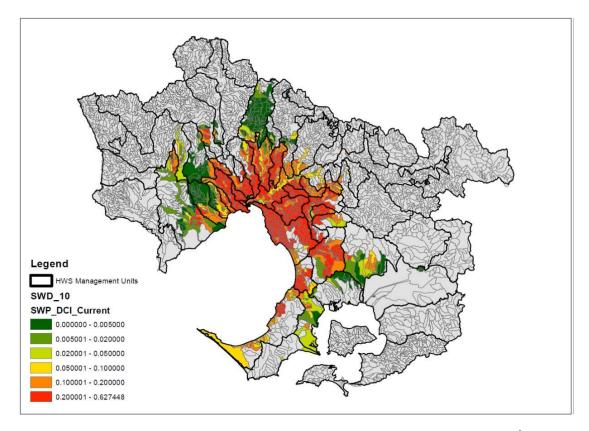
Unsealed roads

Litter and pollution hotspots

Slope

Presence/absence of alluvium

Potential for gully erosion

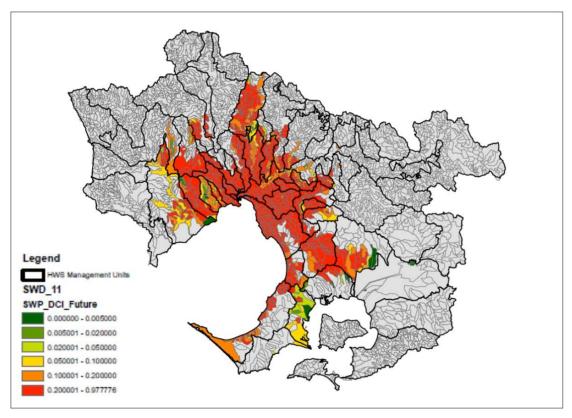

Decision support framework: assigning data to value types

Criteria Description	Criteria Type	Fish	Frogs	Platypus	Macro	Birds	Vegetation	Amenity
Length (km) of unsealed roads in 40m buffer per catchment area (Ha)	Threat	Yes	Yes	Yes	Yes	No	No	Yes
Length (km) of sealed roads per catchment area (Ha)	Threat	Yes	Yes	Yes	Yes	No	No	Yes
Percentage of catchment in litter hotspot	Threat	Yes	Yes	Yes	Yes	Yes	No	Yes
Percentage of litter hotspots within 40m of streams	Threat	Yes	Yes	Yes	Yes	Yes	No	Yes
Percentage of catchment in pollution hotspot	Threat	Yes	Yes	Yes	Yes	Yes	No	Yes
Percentage of pollution hotspots within 40m of streams	Threat	Yes	Yes	Yes	Yes	Yes	No	Yes
Percentage of stream length in alluvium in catchment	Threat	Yes	Yes	Yes	Yes	No	Yes	Yes
Percentage of catchment with high gully erosion potential	Threat	Yes	Yes	Yes	Yes	No	No	Yes
Percentage of stream length with high gully erosion potential	Threat	No	No	No	No	No	Yes	No
Percentage of catchment logged in last 10 years	Threat	Yes	Yes	Yes	Yes	Yes	No	Yes
Percentage of tree canopy in catchment	Mod	No	No	No	No	Yes	No	No
Percentage of tree canopy in (20 / 40m) buffer	Mod	Yes	Yes	Yes	Yes	Yes	No	Yes
Percentage of wetlands/waterbody in catchment	Mod	Yes	Yes	Yes	Yes	Yes	No	Yes

Outputs

Urban areas

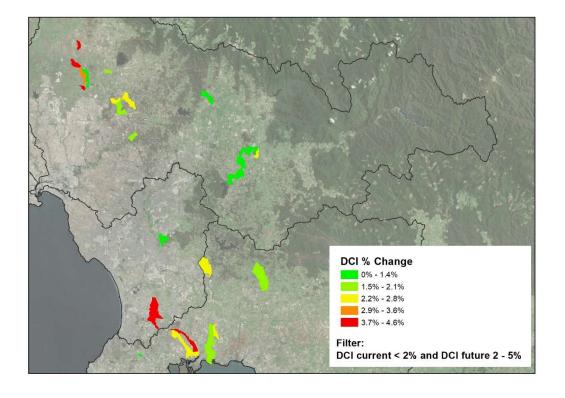
- Current Directly Connected Imperviousness (DCI) within urban growth boundary
- Most established suburbs in catchments with DCI >20%
- Low priority from environmental value perspective


Stormwater Victoria Conference June 2018

9

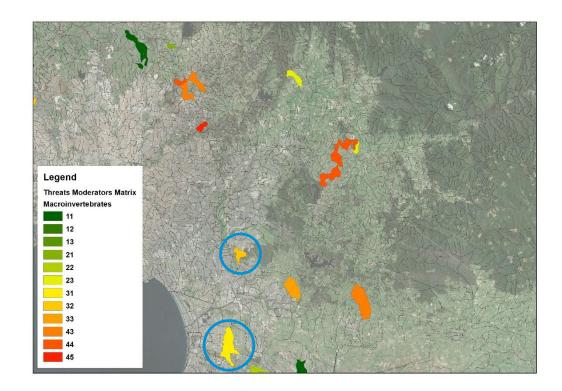
Outputs

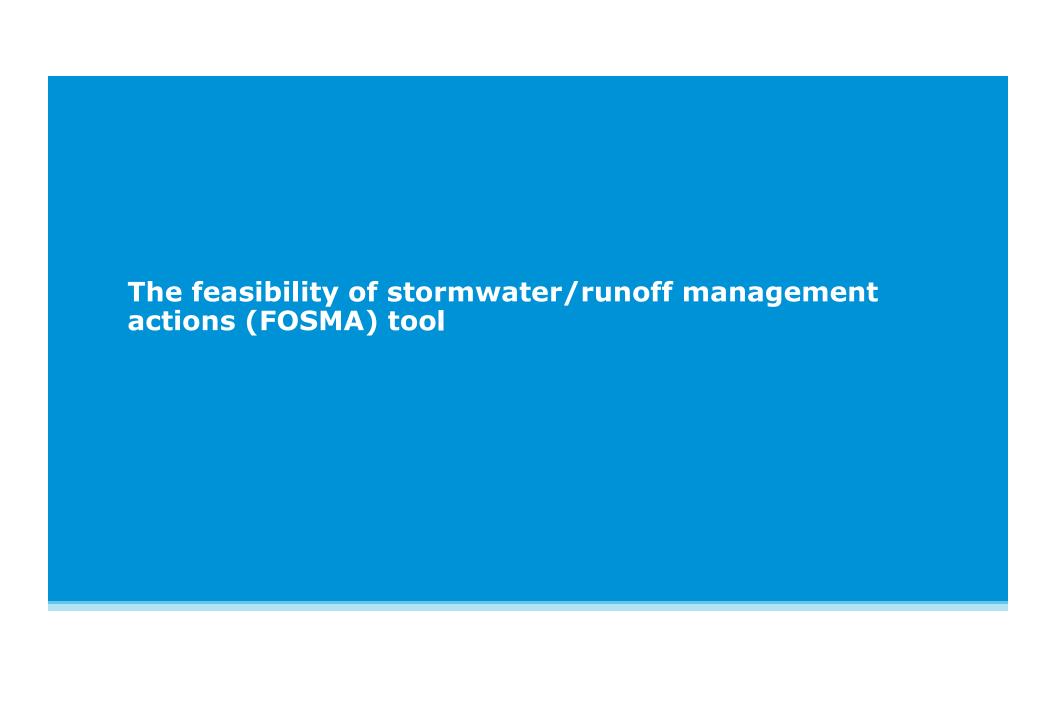
Urban areas


- Predicted future (2050)
 DCI within urban growth boundary
- Assumes business-asusual stormwater management

How do we prioritise?

First cut by primary threat


- Current DCI and future projections at 2050
- Consider magnitude of change together with current condition
- Example: Current DCI <2%, future DCI 2-5%



How do we prioritise?

Refine results

- Identify combinations of threats and moderators
- Target high threats and low moderators
- Results show combinations present in areas of interest

What can the tool do?

2 WAYS OF INTERROGATING AN AREA OF INTEREST

- 1. What stormwater or rural runoff management action can I do here?
- 2. Where can I do this stormwater or rural runoff management action?

FURTHER FILTERING

- 1. For end of pipe or distributed solutions or both; and
- 2. Below objectives

Streamflow				Water quality						Other					
↓ peak flow	trunoff vol	↓ runoff frequency	↑ filtered flow	environmental flows	litter	sediment	NL	ТР	heavy metals	oil & grease	erosion	water supply	amenity	urban cooling	terrestrial biodiversity

What management actions are included?

URBAN STORMWATER

Green roof

Bio-retention system

Wetland

GPT

Green wall

Retarding basin

Permeable pavement

Sand filter

nde

management

plan

Off-stream stock

watering

Sand filter

Tank

Swale/Filter strip

Infiltration

system

Tree pit

Oil &

sediment

separator

Pond/lake

Stormwater harvesting

Stormwater Victoria Conference June 2018

RURAL RUNOFF

Effluent management Fencing Stock containment Whole farm area plan Farm track Dam Ground cover Improved grazing management Nutrient

Riparian

revegetation

management
On-farm stream

Pasture

improvement

crossing
Fencing &
revegetation

Sediment

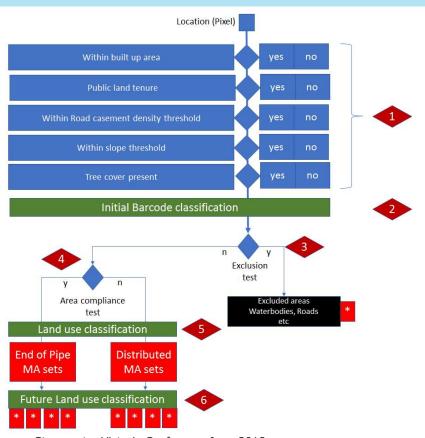
pond

Drainage

improvement works

Revegetation

Dam decommissioning

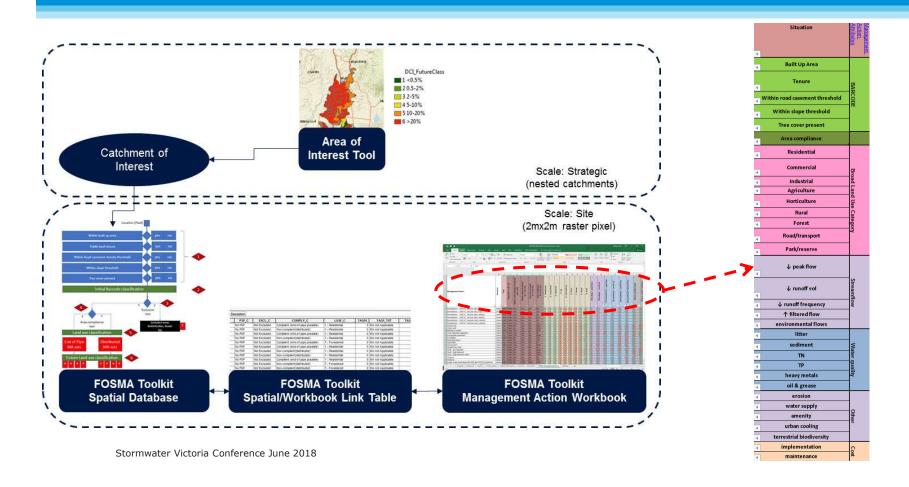

Stormwater

harvesting

Bushfire

15

How does the tool work?

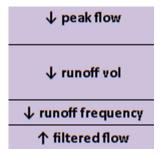

DECISION FRAMEWORK

User generates barcode based on filtering process.

For example: 01110 - 0 - 0

User generates GIS query using barcode to identify results.

Components of the toolkit



Examples

Query: Where are areas with predicted minor DCI increase and what can I do there to address DCI?

Used AOI to identify areas that currently have a DCI <2% which will increase to 2-5% by 2050.

Used FOSMA to identify upstream areas and actions that can address streamflow objectives.

Examples

Query: What can I do here to address stormwater impacts?

Used AOI for initial DCI filter.

Used FOSMA to identify suitable management actions.

Strengths and limitations – Areas of Interest

Customer

- Enables identification of 'Areas of Interest' to direct investment
- Quick to perform standard queries to provide a service for customers

Technical

- Platform allows easy querying and filtering of various data layer combinations
- Interpretation of outputs limited by data availability and quality

Efficacy and performance

- Allows for more in depth queries on specific threat/moderator combinations
- Threat based tool so still need to use GIS workspaces to overlay other datasets e.g. HWS values

Adoption

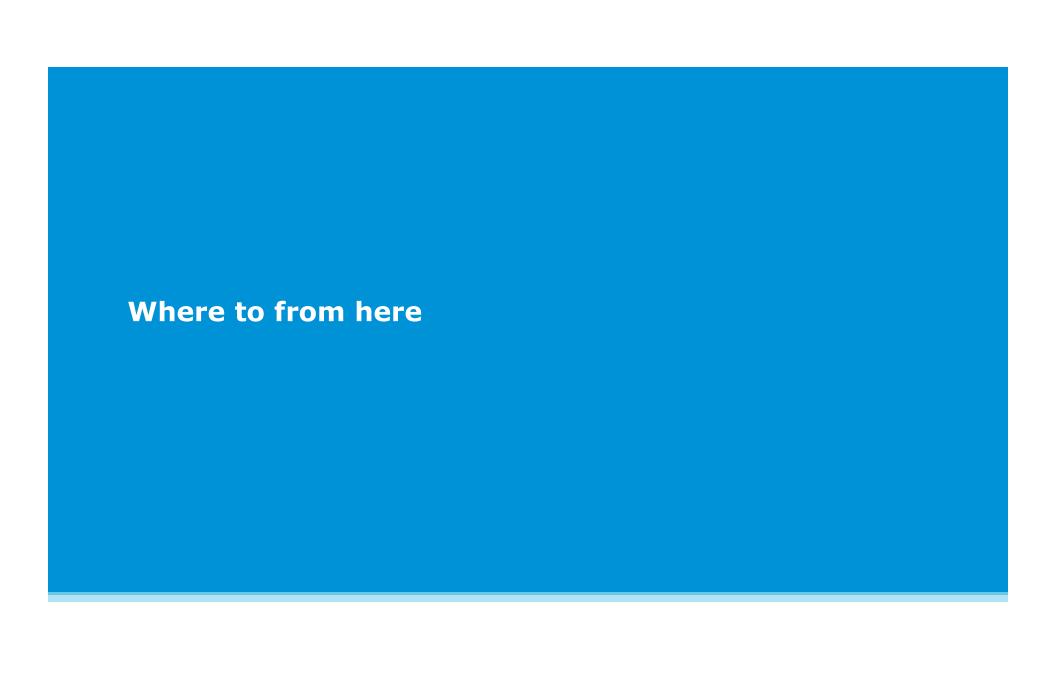
- Requires ArcGIS operator to run new queries and use full capabilities of the tool
- Consider simple online tools or 'workspaces' to facilitate adoption

Strengths and limitations - FOSMA

Customer

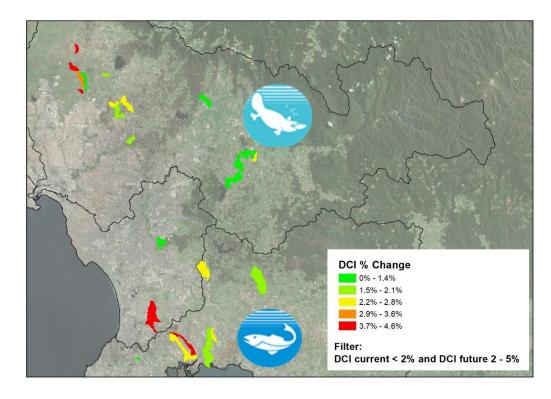
- Available to partners who wish to inform master planning
- Not available online

Technical


- Can identify small spaces for distributed management actions
- Management actions can be filtered based on objectives
- Datasets can provide misleading answers

Efficacy and performance

- Current decision framework limits inclusion of other useful datasets
- Effectiveness ranking for comparison of actions not available


Adoption

- Could be used for master planning when combined with AOI and HWS priority areas
- Requires ArcGIS operator

Where to from here

- Testing workshop with wider group of users
- Technical refinements
- Embed within GIS tools via creation of 'workspaces' with initial 'Areas of Interest', HWS values, and popular FOSMA searches to enable broader use
- Identification of value adds to the tools for example a network tool to interrogate upstream impacts or downstream values connected to a given location

Thank you

Bronwen Hutchinson – Bronwen.Hutchinson@melbournewater.com.au Birgit Jordan – Birgit.Jordan@melbournewater.com.au

Co-authors

Jacobs: Dr Simon Treadwell, Dr Rowan Barling, Dr Belinda Hatt, Milos Pelikan

Melbourne Water: Michael Godfrey