

a bottom up alternative pathway to water sensitive communities

> David Holmgren permaculture co-originator

> > Water Sensitive Communities Inevitable or Pipe Dream? Melbourne June 2018

The fate of suburbia; more low density infill, higher density redevelopment or... RETRO ... SUBURBIA?

Melliodora: drought conditions March 2018

Harcourt Park Bendigo: low cost stormwater detention wetlands for permaculture designed urban farm Designed 2000,

Retro-fitting:

the addition of new technology or features to make existing systems fit for (new) purposes.

RETROSUBURBIA

Retro: the styles & patterns of the past

RETROSUBURBIA

THE DOWNSHIFTER'S GUIDE TO A RESILIENT FUTURE

a **retrofitting pattern language** applied to the three fields of action; the **built, biological and behavioural**

Part A: Setting the Scene

- Key challenges and RetroSuburban responses
- Aussie St: the past and future of suburbia
- Where and how we live

RETROSUBURBIA

•

Built Field: patterns of human habitats

Built Field: patterns of human habitats

F

Case study properties	Melliodo	а	Ecoburbia		Abdalla House		The Plummery		Sharehouse				
Built Field patterns	1986	2016	2013	2016	2008	2016	2008	2017	2011	2017			ſ
Location, services & property													
Regulatory freedom	4	3	1	1	3	3	2	2	3	3			ſ
Adjacent land use	5	4	1 2 2	2	-3	. 3	2	2	3	. N ³		۲.	
Adjacent land owners	3	4	2	4	- 3	{0₄	S U B	I K K		4	F A L		
Adjacent public land	4	5	2 5 3	2	4	۲U ₄	3			0	- ^ -	ь.	[' ^ '
Public transport	1	2	5	5	3	3	5	c .5	5	_ 5	_		
Road traffic	3	3	3	3	4	4	0	1 4	IF (K	111			
Vehicle assess to property	3	4	3	3	4	4	2	υų		L L Z	'		
Pedestrian access from street to site	3	5	3	3	4	4	3	3	3	3			
Corner block	5	5	5	5	2	2	0	0	0	0			
Wide verge and street	5	5	4	4	4	4	0	0	3	3			
Side and back lanes	5	5	2	3	4	- 4	2	2	0	0			
Short driveway/street parking	4	4	5	5	3	5	5	5	4	4			
South facing to the street	0	5	0	0	3	5	5	5		5			
Power	4	4	5 5	5	4	4	5	5	5	5			
Communications (internet)	4	4	5	5	4	4	5	5	3	4			
Mains water	4	4	5	5	4	4	5	5	4	4			
Roof water harvesting potential	0	4		4	1	3	2	2	2	2			
Service easment freedom	0	4	4	4	2	3	4	4	4	4			
Solar access	4	4	5	5	2	5	4	4	5	5			
East-west axis	0	5	4	4	5	5	2	2	3	3			
Bushfire	2	3	5	5	3	4	5	5	5	5			
Windstorm	4	5	2	2	2	4	4	4	4	4			[
Flood	5	5	5	5	1	1	5	5	5	5			[
Stormwater flood	3	4	5	5	2	2	3	3	4	4			[

Biological Field Patterns												
Available land area	5	5	3	3	2	2	2	2	3	3		
Soil rooting volume	3	4	0	2	2	3	3	4	4	4		
High mineral fertility &CEC	3	4	1	2	3	4	4	5	1	1		
Freedom from soil contamination	3	4	5	5	3	4	0	3	2	3		
Sweet water tables	3	4	5	5	4	4	3	3	3 2	3		
Moist climate	4	4	1	1	3	3	3	3		2		
Freedom from frost	0	1	5	5	2	2	5	5	4	4		
Stormwater harvesting potential	5	5	2	2	2	2	1	1	3	3	_	
Freedom from large trees	5	4		5	0	5	1	4	3	4	_	
Effective summer shading trees & vines	0	5	1	3	0	4	2	4	2	3		
Established food trees	1	5	0	3	2	5	3	4	4	5		
Established veggie garden beds	0	5	0	4	0	5	0	4	0	5		
Established animal systems	0	5	0	5	0	5	0	5	0	1		
Greenhouses/ shadehouses	0	4	0	3	0	4	0	3	0	0		
Drip & high-efficiency irrigation	0	4	0	5	0	4	0	4	0	1		
Freedom from problem plants	1	3	4	4	3	4	4	4	1	2		
Subtotal	33	66		57	27	60	31	58	32	44		
Total Score	122	243		222		217	129	186	141	163	0	0
Sun Rating 1-5	2	7	3	6	2	6	2	5	3	4		
<100 = 1												
100-125 = 2		R	ETRO	n ci	1 D I I	DD	ΤΛΝ	R	[]]	[(h	ГЛТ	C 1
125–150 = 3		- 1		"	JDU	N D	1 A IV	- N	LAL	L)	AI	Ĺ
150 175 = 4												
175–200 = 5						ĤĤ	CKL	IS	T			
200-224 = 6						- 11 L	. CIVL					

Biological Field: patterns of life & growth

RETROSUBURBIA THE DOWNSHIFTER'S GUIDE TO A RESILIENT FUTURE

Kat Lavers Northcote

Biological Field: patterns of life & growth

- How to assess a garden
- Garden Farming (Permaculture Zones 1 & 2)
- Building and maintaining soil fertility
- Managing soil contamination
- What to grow where
- Food growing systems
- Seed saving and backyard nursery
- Domestic animals in suburbia
- Wildlife in the Garden; by and beyond design
- Beyond the boundaries (Permaculture Zones 3 & 4)

MELBOURNE 2046?

The Los Angeles Model More than one million extra people – or 40 per cent of projected population growth to 2046 – will live on the city's edge in 2046, under a planning scenario that sees unfettered low-density development.

Melbournians will rely more heavily on cars to get to work, with only 3 per cent of jobs accessible within 30 minutes by trains, trams or buses.

Infrastructure Australia

The New York Model A compact, higher-density vision for Melbourne will concentrate jobs and housing within 15 kilometres of the city centre, and will drive up public transport use.

Infrastructure Australia

MELBOURNE 2046?

The London Model A medium-density model that spreads the population growth more evenly and puts jobs closer to where people live.

Infrastructure Australia

THE MELBOURNE MODEL! (Retrosuburbta)

- · Conserve existing private and public open space for garden and urban agriculture
- · Maximise use of existing residential building stock ("take in a boarder" campaigns and support)
- Revitalise household and community non monetary economies
- Reduce commuting by home based and local livelihoods
- Retrofit unused commercial and other building stock when needed for a rising population

IMPLICATIONS FOR STORMWATER ENGINEERING

Adapt to;

- Property Bubble Burst: harder access to credit, slowing or stalling housing development
- Climate Change: increase in extreme weather events

Opportunities for low built and biological retrofits to existing infrastructure to;

- encourage water quality and soil carbon building program (eg Keyline & Natural Sequence Farming)
- · reward stormwater and greywater reuse on household level
- increase householder and community awareness and engagement

For example:

Guidelines to resolve issues to allow and support retrofits by residents that appropriately store, slow, detain, spread and sink stormwater on private and public land to; (**RetroSuburbia**)

- · increase productivity of garden and urban agriculture
- · reduce bushfire hazard
- rebuild floodplain ecosystems

READINGS & RESOURCES

WWW.RETROSUBURBIA.COM

Retrosuburbia: the manifesto Feeding retrosuburbia: from the backyard to the bioregion A short personal and global history of Retrofitting the Suburbs

History from the future: a story from 2086 RetroSuburban Real Estate Evaluation Tool (excel spreadsheet) The Melbourne Model 2018

Books from WWW.HOLMGREN.COM.AU

RetroSuburbia: the downshifters guide to a resilient future Permaculture: Principles & Pathways Beyond Sustainability revised edition 2017

Future Scenarios: how communities can adapt to Peak Oil and Climate Change 2008

