

Fairbairn Park Pavilion

The design and construction of a hydraulically disconnected drainage system

> Nick Andrewes Senior Water Resources Engineer Engeny Water Management

City of Moonee Valley

Introduction

- ► What is a "disconnected" drainage system?
- The scope of work
- ► The Site
- Fairbairn Park Masterplan
- Stormwater management approach
- Detailed design
- Construction
- Applicability to other areas
- Questions

What is a "disconnected" drainage system?

- Disconnecting impervious areas from receiving waterways generally by infiltrating and reusing
- Waterway benefits
 - Hydrological
 - Water quality

Improved water availability for terrestrial plants

Scope of Work

- Flooding, drainage and stormwater quality system design for Fairbairn Park Pavilion
- Integrate the design with the landscape and building design
- Work closely with Council's engineering, parks and gardens and landscape teams

The Site

 Ascot Vale
 26 hectares
 Maribyrnong River Floodplain

The Site

Existing site uses:
Exercise / Sports
Trail walking
Dog walking

River activities

Residential development increasing in the area

Fairbairn Park Masterplan

- Masterplan objectives
 - Improve sporting facilities
 - Improve pedestrian connectivity
 - Enhance the natural environment
 - Construct sporting pavilion/community centre hub

Fairbairn Park Masterplan

Stormwater Management

Objectives

- 1% AEP flood protection
- Drainage
 - ► 10% AEP minor underground
 - ► 1% AEP major overland
- Stormwater quality
 - BPEMG targets

Stormwater Management

- Options for stormwater management at the site
 - 1. Traditional pipe and pit drainage system with separate stormwater quality system
 - 2. Disconnected infiltration system integrated with stormwater quality system.
- Option 2 chosen as the preferred option for the following reasons:
 - Opportunity to lead by example
 - Cost competitive
 - Avoided need for connection to waterway approvals

Design Considerations

x x SILT Brown Moist to dry Medium dense 0.900 x x x x Becoming dry at 0.200 x x CLAY, silty Brown Hard 1.200 x SAND, silty White grey Moist x 1.500 x Medium dense	Hole No 1 Depth (m)	Classifi- cation	Shear Vane Strength kPa	ENGINEERING LOG
x CLAY, silty x Brown Dry Brown Dry Hard 1.200 X x SAND, silty white grey Moist x Medium dense 1.500 X	0.900	x x x x x		SILT Brown Moist to dry Medium dense Becoming dry at 0.200
x SAND, silty x White grey x Moist x Medium dense	1 200	x x x x x		CLAY, silty Brown Dry Hard
	1.500	x · · · · x · · ·		SAND, silty White grey Moist Medium dense
	3 500		<u></u>	Groundwater at 3.200
Becoming wet at 3.000	0.000	x x x x x		SILT, sandy Grey Wet Medium dense

- Flat (~1:1000) but generally grading towards the River.
- Variable soil profile
 - Low to high permeability
 - Clayey SAND 1.5 3.0 m/day

Water table ~3.2 m

Drainage system design approach

Drainage system operation

Design considerations

- Capturing fines
- Soil bridging criteria

4.	FILTER MEDIA – DETAILED SPECIFICATION					
	PARTICLE SIZE DISTRIBUTION					
	A SUITABLE SOIL WILL HAVE STRUCTURAL INTEGRITY AND A INFIL' APPROPRIATE RANGE:					
	CLAY & SILT	<3%	(<0.05mm)			
	VERY FINE SAND	5-30%	(0.05-0.15mm)			
	FINE SAND	10-30%	(0.15-0.25mm)			
	MEDIUM TO COARSE SAND	40-60%	(0.25-0.5mm)			
	COARSE SAND	<25%	(0.5–1.0mm)			
	VERY COARSE SAND	0-10%	(1.0-2.0mm)			
	FINE GRAVEL	<3%	(2.0-3.4mm)			
	PERMEABILITY - THE SATURA	ATED HYDRAULIC C	ONDUCTIVITY REQU			

- Volumetric requirements and exfiltration rates
- Infiltration rates
- System redundancy
 - Groundwater
 - Soil spatial variability
 - Fines accumulation
- Maintenance
 - Inspection/flush points
 - Compaction
- Safety
 - Batter slopes
 - Bollards

Infiltration trench design

 Capture surface and subsurface inflows

- Conveyance to exfiltration trenches
- Landscape
 integration

Exfiltration trench design

Bio-retention basin design

Construction (1-4)

General facts:

- Approximately 18 month construction
- Staged construction of drainage
- WSUD completed last
- Drainage/WSUD cost ~\$150 K

- Conventional stormwater drainage system ~\$150 200K
- December 2017 flooding

Construction (2-4)

Construction (3-4)

Construction (4-4)

Applicability to other areas (1-1)

- Look for opportunities to disconnect impervious areas on all projects
 - Other places around Australia and the world relying on this method for drainage.
- Extent of implementation could consider factors including:
 - Soil type
 - Effectiveness of solution
 - ► Maintenance / asset life
 - Potential for downstream impacts
 - Groundwater flow changes
 - Subsurface pollutant transfer
 - Sensitivity of receiving waterways

Questions?

