From little things, big errors may grow – A look at the importance of QA on hydraulic models.

Peter Woodman Senior Environmental Engineer (GHD)

Rushiru Kanakaratne Senior Civil Engineer (GHD)

Presentation Outline

- Introduction
 - Why are we looking at this?
 - Why is it important?
- Overview of five common issues that were identified
- Summary of other issues tested
- Conclusion
 - o Summary of outcomes.
 - o Where to from here.

Acknowledgements:

Greg Eaton of GHD who assisted with reviews and testing.

The former 'Flood Mapping & Mitigation' team at Melbourne Water, particularly Ruwan Jayasinghe and Rod Watkinson.

Introduction

- Melbourne Water (MW) needed a formal review process to efficiently check whether a model was "fit for purpose"
- Through the review of a number of models, a Quality Assurance (QA) framework was developed to guide this process
- Reviews highlighted that with increasing model complexity and/or size there can be a loss of focus on checking the fundamentals (i.e. are pipes are snapped & below ground)
- Testing was then undertaken to determine the impact of some modelling parameters or issues on the results

Common Issues - Overview

Example 1 - "Gully" Lines

ISSUE OUTLINE

Thalwegs often don't align with the model grid, so without manipulation TUFLOW sees artificial high points

Example 1 - "Gully" Lines

SOLUTION OUTLINE

Introducing a "gully" terrain modification will force TUFLOW to adopt an elevation that is no higher than that along the thalweg in the base terrain data

Example 1 -"Gully" Lines

IMPACT OF CHANGE

Adding "gully" lines was found to have a significant impact on flood levels along waterways (typically lower locally) by providing a more continuous flow path and/or altering timing of flows.

Example 2 - Headwall Representation

ISSUE OUTLINE

Representing headwalls as "pits" can restrict capacity of 1D element due to their finite size and ability to connect to the cell they fall in vertically (i.e. at any elevation)

Example 2 - Headwall Representation

SOLUTION OUTLINE

Changing "pits" to "SX" connections will better represent headwalls as they have infinite size and must connect to a cell with an elevation just below the invert of the culvert

Example 2 -Headwall Representation

IMPACT OF CHANGE

Modelling headwalled outlets as "SX" connections can have a significant impact on flood levels along waterways by removing constrictions on 1D elements that hold back water.

Example 3 - Choice of Pit Type

ISSUE OUTLINE

TUFLOW sees all "R" pits in the vertical dimension (i.e. as a SEP) and may understate inlet capacity due to inlet calculations and/or flow bypassing, especially where grates exist.

Example 3 -Choice of Pit Type

IMPACT OF CHANGE

Converting "R" pits to "W" pits over the area show can significantly affect results by removing some of the constraint on flow getting into and out of the drainage system.

Example 4 -**Catchment Roughness**

ISSUE OUTLINE

Incorrectly classifying areas or applying broad definition of roughness can alter flow distribution by misrepresenting the resistance of areas and/or altering timing.

Area of material refinement

Example 4 -**Catchment Roughness**

SOLUTION OUTLINE

Refining roughness parameters and/or detail along key flow paths and areas where flow is distributed can identify preferential flow paths and better represent the actual resistance of the area.

Area of material refinement

Example 4 – Catchment Roughness

IMPACT OF CHANGE

Representing realistic roughness along key flow paths can significantly affect results by altering the path and/or timing of flow through the area

Example 5 - "Rain on grid" modelling

ISSUE OUTLINE

Applying unfactored losses will underestimate runoff, by applying too much loss due to the order in which TUFLOW applies the rainfall factors & losses.

Example 5 -"Rain on grid" modelling

SOLUTION OUTLINE

Rainfall losses applied in TUFLOW should be factored down by the following:

- 'f1' and 'f2' factors
- Impervious fraction as losses only apply to pervious component

Plot shows change in cumulative rainfall between Scenario 1 (Unfactored losses) & Scenario 2 (Factored Losses)

Example 5 -"Rain on grid" modelling

IMPACT OF CHANGE

Factoring losses appropriately was found to significantly alter flood extents, levels and flows by increasing the volume of runoff in the model, especially along main drainage lines.

Summary of other tests

The following issues were also tested :

- Lowered cell wet/dry depth from 0.002m to 0.0002m
- Halving the 2D timestep
- Fixing drainage network issues (connectivity, cover, inverts and flat/negative grade)
- Using "I" channels to represent hydraulic properties of non-standard assets
- Additional nodal storage
- Cell orientation
- Revised subarea definition & inflow distribution (traditional hydrology/hydraulics)
- Applying all flow to surface (rainfall-excess on grid)
- Removing entrance/exit losses on pits
- Depth varying-roughness for distributed inflow models
- Changing "A" and "D" parameters on 2D/2D links

Conclusion

- It is important that we represent the physical processes occurring in catchments as realistically as possible – so there need to be a focus on checking the models interpretation of your input.
- Testing found that certain variables can have a significant impact on results both locally and more widely if it involves:

a) Storing volume;

b) Changing distribution of flow; and/or

- c) Significantly altering the timing of flows.
- This process highlighted a number of guiding questions and focus areas to target when reviewing (We have these available as a 1 page handout today)

TUFLOW QA Guiding Questions and Focus Areas

For further information please contact Peter Woodman of GHD at peter woodman @ghd.com oron (03) 8687 8351

www.ghd.com